PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsBrain genes change over time

BioNews

Brain genes change over time

Published 9 January 2013 posted in News and appears in BioNews 632

Author

Mehmet Fidanboylu

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

The brain is a genetic mosaic of nerve cells that differ from each other slightly and change over time, according to a new study published in the journal Nature....

The brain is a genetic mosaic of nerve cells that differ from each other slightly and change over time, according to a new study published in the journal Nature.

Dr Geoff Faulkner, lead author of the study from the Roslin Institute in Edinburgh, Scotland, said: 'This research completely overturns the belief that the genetic make-up of brain cells remains static throughout life and provides us with new information about how the brain works'.

'If we can understand better how these subtle genetic changes occur we could shed light on how brain cells regenerate, how processes like memory formation may have a genetic basis and possibly link the activity of these genes to brain diseases'.

The changes are brought about by retrotransposons - mobile gene elements that are able to shuttle in and out of genes, copying and pasting themselves into different parts of the genome over time. Retrotransposons are most commonly found in plants, but also make up more than 40 percent of the human genome according to the most recent estimates.

Researchers from the Roslin Institute collaborated with scientists from the Netherlands, Italy, Australia, Japan and the USA to identify the sites into which retrotransposons insert themselves in brain cells.

Taking samples from just two brain regions involved in learning and memory (the caudate nucleus and hippocampus), the findings revealed almost 25,000 insertion sites. Of these, 7,700 contained L1 retrotransposons, the best-known subtype. A more surprising finding was that nearly 14,000 insertion sites contained the Alu family of retrotransposon - previously unknown to be present in brain cells.

Further investigation of the insertion sites found that many lie within genes that have integral roles for healthy functioning of the brain, or indeed preventing disease. These include tumour-suppressor genes that are frequently found to be faulty in brain tumours.

'We want to see how much variability there is in this phenomenon in the healthy human population, to evaluate if there is a correlation between retrotransposition frequency and brain tumor formation', said Dr Faulkner, 'and to see whether it is increased or reduced in Alzheimer's disease'.

Other genes in which retrotransposons were found are involved in signalling between brain cells, which could affect memory. While the hippocampus - where new nerve cells are produced - is where short-term memories are believed to be consolidated into long-term memories, the effect of retrotransposons on these processes is currently unclear.

Dr Faulkner told Scientific American: 'It is tempting to speculate that genetic differences between individual neurons could impact memory, but we have no evidence yet that this is the case'.

Dr Virginia Warren, assistant medical director for Bupa, also stressed the importance of not jumping to conclusions at this early stage: 'This area of research is still in its infancy and we need to be careful not to make too many assumptions. These findings provide the building blocks for understanding some basic mechanisms in the brain. They don't provide all the answers, but it's a good place to start'.

Related Articles

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
News
13 August 2021 • 2 minutes read

Disease-causing sperm mutations identified in one in 15 men

by Dr Rachel Montgomery

A recent study has found that as many as one in 15 men carry mutations in their sperm that could impact the health of their children...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
18 April 2017 • 1 minute read

'Language learning genes' uncovered

by Sujatha Jayakody

Researchers at the University of Edinburgh have identified a gene that may help explain how language develops in children...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
20 March 2013 • 2 minutes read

Stem cells responsible for 'thinking' brain cells identified

by Dr Tamara Hirsch

Scientists have identified a sub-type of stem cell responsible for neuron development within the cerebral cortex associated with higher level brain function...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
13 December 2012 • 2 minutes read

Young genes in young humans provide clue to brain evolution

by James Brooks

Genes that other species do not possess may play a crucial role in making the human brain what it is. Until recently scientific consensus held that the different use of genes shared across most of the animal kingdom gave each species' brain its unique character. However this hypothesis may need some revision following a study led by Professor Manyuan Long of the University of Chicago...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
24 September 2012 • 2 minutes read

Human brain atlas, revealing genetic activity in 3D, published online

by Dr Lux Fatimathas

The first detailed maps of genetic activity in the human brain have been published online by scientists...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
24 September 2010 • 1 minute read

Gene linked to late-onset Alzheimer's disease

by Alison Cranage

US scientists have identified a gene which they suggest is associated with Alzheimer's and could help uncover the causes of the disease....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
7 September 2009 • 2 minutes read

Three new gene variants linked to late-onset Alzheimer's disease

by Ailsa Stevens

British and French researchers this week announced the discovery of three new genes linked to late-onset Alzheimer's disease, certain variations in which may increase a person's risk of developing the disease by 10-15 per cent. If new drugs could be developed to counter the effects of these mutations, it could help to prevent 20 per cent, the equivalent of 100,000 cases, of Alzheimer's disease in the UK per year, the researchers claim....

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Synthetic blood to be trialled within two years

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856