PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsLeukaemia patient's genome sequence pinpoints gene mutations in other patients

BioNews

Leukaemia patient's genome sequence pinpoints gene mutations in other patients

Published 10 August 2009 posted in News and appears in BioNews 520

Author

Adam Fletcher

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

The second complete cancer cell genome sequence was published online last week in the New England Journal of Medicine, representing a pioneering effort to comprehensively describe the hundreds of genetic changes that underlie this most insidious of diseases...

The second complete cancer cell genome sequence was published online last week in the New England Journal of Medicine, representing a pioneering effort to comprehensively describe the hundreds of genetic changes that underlie this most insidious of diseases. The work was carried out by researchers at Washington University's Genome Center and the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, US. The same team was behind the first whole cancer genome sequence published in the journal Nature just ten months ago.


Researchers sequenced the genome of a tumour cell from a 38-year old man with Acute Myeloid Leukaemia (AML), and compared it to the sequence from a healthy skin cell from the same patient. Any differences in the two sequences were flagged and analysed. Amazingly, none of the mutations identified in this study are the same as those reported in the previous publication - also an AML patient - demonstrating the astonishing diversity of cancers. 'Only by sequencing thousands of cancer genomes are we going to find and make sense of the complex web of genetic mutations and the altered molecular pathways in this disease', explained lead author Dr Elaine Mardis.


This time, the team identified some 750 AML-associated mutations. Twelve of these were within Genes, whilst 52 were in the poorly understood non-coding stretches that lie in-between genes. To corroborate their findings, Mardis and colleagues also looked at sequences from a further 187 AML patients. Four of these mutations turned up again and again, including a novel change in a gene called IDH1, a mutation already associated with a form of brain cancer called a glioma. When mutations are shared by different patients in this way, it is probable that they are implicated with the disease.


'That so many of the mutations were found outside of protein-coding genes also underscores the need to sequence whole genomes to find all the mutations that occur in cancer,' said Dr Richard Wilson, co-author of the paper and director of Washington University’s Genome Centre. 'If we only look at genes with known or suspected links to cancer, we'll miss many mutations that are potentially relevant', he added.


Advances in sequencing technology mean speed and accuracy are rising whilst costs fall. Dr James Downing of St Jude Children's Research Hospital, writing in an accompanying editorial, emphasises this point: 'As these improvements continue, the cost of obtaining the complete DNA sequence of a cancer cell will rapidly decrease, thus making it possible to acquire data from a larger number of cancers'. The sequencing price for last week's publication totalled half a million dollars, taking just a few months to perform. This is one-third the price of sequencing the first cancer patient just ten months ago.

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 December 2012 • 2 minutes read

Immune cell gene therapy a success for one leukaemia patient

by Joe Jebelli

A seven-year-old girl with a highly aggressive form of leukaemia may have been 'cured' by an experimental therapy that harnesses the body's immune system to seek out and destroy the disease....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
23 October 2012 • 1 minute read

Study finds genetic link to acute myeloid leukaemia

by Maren Urner

Researchers from the Wellcome Trust Sanger Institute have identified three different genetic mutations linked to acute myeloid leukaemia (AML), a cancer that is characterised by a rapid increase in abnormal white blood cells in the bone marrow....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
29 November 2009 • 2 minutes read

Link between gene variant and brain tumour growth revealed

by Dr Rebecca Robey

The link between a certain genetic mutation and the most common form of brain tumour has been unravelled by US scientists. The mutation, in a gene called IDH1, was already known to be associated with the development of brain cancers, but it was not known how the mutation contributed to the disease....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
9 June 2009 • 2 minutes read

Scientists map complete genome of cancer patient

by Alison Cranage

In a world first, scientists at Washington University, US, have sequenced the entire genome of a woman with acute myelogenous leukaemia (AML). They sequenced DNA from both normal skin cells and malignant tumour cells and found that 10 genes were mutated in the cancerous cells. The findings...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« First gene clue to epilepsy in mice

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
13 June 2022 • 2 minutes read

Drop in diversity of blood stem cells leads to old-age health issues

27 June 2022 • 2 minutes read

UK report reveals public attitudes to fertility, genomics and embryo research

27 June 2022 • 2 minutes read

Shortage of sperm donors despite men willing to donate

27 June 2022 • 2 minutes read

North East London CCG proposes offering three funded IVF cycles

27 June 2022 • 2 minutes read

Fibrosis drugs reverse ovarian ageing in mice

27 June 2022 • 2 minutes read

Gene implicated in motor neurone diseases discovered

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856