PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsMouse heart and blood cells obtained from reprogrammed skin cells

BioNews

Mouse heart and blood cells obtained from reprogrammed skin cells

Published 9 June 2009 posted in News and appears in BioNews 456

Author

Evelyn Harvey

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).

Heart and blood cells can be grown from reprogrammed mouse skin cells, report University of California, Los Angeles (UCLA) researchers in the journal Stem Cells. The researchers say this is the first demonstration that stem cells from reprogrammed skin can be used to generate three types of...

Heart and blood cells can be grown from reprogrammed mouse skin cells, report University of California, Los Angeles (UCLA) researchers in the journal Stem Cells. The researchers say this is the first demonstration that stem cells from reprogrammed skin can be used to generate three types of heart and blood cell, including beating heart tissue. These could theoretically be used to repair damage following disease or heart attack.


Skin cells are transformed into stem cells using a combination of genetic factors. UCLA researchers were among those to develop the technique last June. The cells, known as induced pluripotent stem cells (iPS cells), resemble embryonic stem cells (ES cells) but do not require the use of human eggs or embryos in their development. A Canadian team previously generated beating heart tissue using embryonic stem cells.


Robb MacLellan and his team grew iPS cells on a protein matrix designed to promote the transition of stem cells into cardiovascular progenitors. These specialised cells were then treated under different conditions to direct development into three types of cardiovascular tissue: cardiomyocytes, or mature heart muscle cells that control heartbeat, endothelial cells, which form rudimentary blood vessels, and vascular smooth muscle cells, the specialized cells that line blood vessel walls. The cardiomyocytes began to beat once mature. 'I believe iPS cells address many of the shortcomings of human embryonic stem cells and are the future of regenerative medicine', said MacLellan, senior study author and associate professor of cardiology and physiology.


If iPS cell-derived cardiovascular tissues can be used to treat heart disease or damage, they could potentially allow personalised treatment following, for instance, a heart attack. A patient's own skin cells could provide iPS cells that in turn would be used to develop new heart tissue, which would be genetically matched to the patient thus avoiding immune rejection. 'Our hope is that, based on this work in mice, we can show that similar cardiovascular progenitor cells can be found in human iPS cells and, using a similar strategy, that we can isolate the progenitor cells and differentiate them into the cells types found in the human heart', MacLellan said.


Work is underway at UCLA to determine whether the techniques established in mice can be used in humans. Although human applications of this research remain distant, it seems that iPS cells could provide regenerative treatment in future without the need for the controversial use of human eggs and embryos.

Related Articles

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
13 February 2013 • 3 minutes read

Reprogramming adult epithelial cells into embryonic-like stem cells improves therapeutic safety

by MacKenna Roberts

Japanese researchers announced last week that they have advanced their understanding and ability to safely 'reprogramme' adult stem cells to resemble embryonic stem (ES) cells without inducing tumours or harmful genetic abnormalities. The Japanese team of researchers, lead by Dr Shinya Yamanaka at Kyoto University, reprogrammed liver...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Unlimited blood supply from stem cells within ten years, say researchers

by Ailsa Stevens

The NHS Blood and Transplant Authority, the Scottish National Blood Transfusion Service and the Wellcome Trust have jointly announced a pioneering project to create a potentially unlimited supply of blood for transfusions using embryonic stem (ES) cells derived from surplus IVF embryos which are donated for research...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 1 minute read

Scientists turn stem cells into blood for transfusions

by Alison Cranage

A team of scientists from the Advanced Cell Technology company (ATC), California, USA, have made massive amounts of red blood cells from human embryonic stem cells (ESC). The work may lead to laboratories being able to produce blood for transfusions, providing a limitless supply and an alternative...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Stem cell lines created with sickle cell anaemia mutation

by Dr Charlotte Maden

Researchers at Johns Hopkins University School of Medicine in the US have found a faster and more efficient way to reprogramme cells into embryonic-like stem cells so that they can be used to study genetic disorders such as sickle cell anaemia. The study was published in the...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Skin-derived stem cells treat Parkinson's disease in rats

by Evelyn Harvey

Nerve tissue derived from stem cells made from reprogrammed skin developed into normal brain tissue and relieved symptoms of Parkinson's disease in rats, in a study published in the journal Proceedings of the National Academy of Sciences of the USA (PNAS) last week. Scientists at the Whitehead...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Reprogrammed stem cell treatments 'within a decade'

by Katy Sinclair

The Japanese scientist whose team was responsible for the breakthrough that enabled human skin cells to be reprogrammed to behave like stem cells, Shinya Yamanaka from Kyoto University, has estimated that stem cell treatments for some diseases could be as little as a decade away. Stem cells...

Image by Bill Sanderson via the Wellcome Collection, © Wellcome Trust Ltd 1990. Depicts Laocoön and his family (from Greek and Roman mythology) entwined in coils of DNA.
Image by Bill Sanderson via the Wellcome Collection, © Wellcome Trust Ltd 1990. Depicts Laocoön and his family entwined in coils of DNA (based on the figure of Laocoön from Greek and Roman mythology).
News
9 June 2009 • 2 minutes read

Adult skin cells yield first cloned human embryos

by MacKenna Roberts

Scientists at the California biotechnology company, Stemagen, announced last week that they had successfully cloned the world's first human embryos, created from adult male skin cells. Although British scientists cloned human embryos two years ago, this is the first time that scientists have managed to grow such...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Reprogramming stem cell breakthrough

by Dr Jess Buxton

Two groups of scientists have managed to 'reprogramme' skin cells, retuning them to an embryonic-like state in which they regain the potential to develop into any type of body cell. The studies, published in the journals Cell and Science, pave the way for new research aimed...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Stem cells produced from 'reprogrammed' skin cells

by Ailsa Stevens

By Ailsa Taylor: Three independent research groups have reported successfully causing skin cells from adult mice to revert back to an embryonic stem cell-like state; a technique that could potentially help to resolve the ongoing ethical debate over stem cell research. Published in the journal Nature, this groundbreaking research could...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Court denies sperm donor paternal rights in favour of lesbian parents

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856