PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsTreatment hope for childhood muscle wasting disorder

BioNews

Treatment hope for childhood muscle wasting disorder

Published 9 June 2009 posted in News and appears in BioNews 426

Author

Ailsa Stevens

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

The first trial of a new treatment for Duchenne muscular dystrophy (DMD) will start later this year in the UK. The treatment, which has been developed by using human cells and mice experiments, hopes to overcome the effects of the genetic defect that causes the muscle wasting...

The first trial of a new treatment for Duchenne muscular dystrophy (DMD) will start later this year in the UK. The treatment, which has been developed by using human cells and mice experiments, hopes to overcome the effects of the genetic defect that causes the muscle wasting disorder. The plans were announced last week at the annual conference of the British Society for Human Genetics (BSHG) by Professor Francesco Muntoni, a Paediatric Neurologist at Imperial College's School of Medicine, who led the research.


DMD is a muscle-wasting disease that causes a steady deterioration of muscles and often results in death before the age of 30. The condition, which is usually inherited and incurable, affects 1 in 3500 male newborn boys. According to the researchers, DMD is caused by an inherited fault in the gene that encodes the body's instructions for making dystrophin, a crucial muscle protein.


Working in partnership with the Muscular Dystrophy Campaign, the Duchenne Parent Project and Duchenne Support Group, the scientists in this UK consortium (the MDEX Consortium) will use 'antisense-RNA' - a chemical relative of DNA - as a 'molecular patch' to fix the dystrophin gene deletions that are frequently the cause of DMD.


Professor Muntoni said: 'We knew from previous studies in mice that faulty dystrophin genes could be mostly repaired in this way, returning muscle strength to about 70 per cent of normal. However, this is the first time that different research groups have teamed up to pinpoint the optimal target DNA sequences in DMD that could be used in the treatment of humans'.


The initial trial will just explore the safety and efficacy of the new therapy by injecting the antisense RNA molecule into one muscle, but Professor Muntoni is optimistic that the same treatment could also be administered systemically, to target all the muscles of the body.

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
5 September 2013 • 2 minutes read

Rare disease treatments risk being 'entirely out of patients' reach', says MPs report

by James Brooks

A parliamentary report has recommended a ring-fenced fund to ensure access to 'low volume, high cost' treatments for rare diseases...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
12 November 2012 • 2 minutes read

Muscular dystrophy screening should be NHS priority, says expert

by Sarah Pritchard

The NHS must be prepared to screen every newborn baby for Duchenne muscular dystrophy (DMD) — the most severe form of muscular dystrophy — in three years time, says a leading UK geneticist who explains that promising treatments are close to becoming a reality...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
15 November 2009 • 2 minutes read

Gene therapy for muscle wasting conditions shows promise

by Alison Cranage

Research published in the journal Science Translational Medicine last week shows gene therapy can improve muscle size and strength in monkeys. The technique holds promise as a therapy for several neuromuscular disorders, and researchers hope that clinical trials will start next year....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
9 June 2009 • 2 minutes read

New DMD treatment shows promise in early trials

by Ailsa Stevens

An experimental treatment for boys with the inherited muscle wasting disease Duchene Muscular Dystrophy (DMD) has showed promise in human safety trials, according to a study published in the New England Journal of Medicine. In the first ever trial on humans, the new drug was shown to...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
9 June 2009 • 2 minutes read

Stem cell therapy treats muscular dystrophy in mice

by Dr Rebecca Robey

Researchers at the University of Texas Southwestern Medical Centre have developed a new technique to treat the symptoms of muscular dystrophy using embryonic stem (ES) cells. The group, reporting in the February 2008 issue of Nature Medicine, successfully manipulated mouse ES cells to transform them into muscle-forming...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
9 June 2009 • 1 minute read

New drug offers hope for Duchenne muscular dystrophy

by Heidi Nicholl

A new drug is being trialled in humans which has been able to cure Duchenne muscular dystrophy (DMD) in mice with symptoms of the disease. The drug, named PTC124, has been developed by scientists working at the University of Massachusetts Medical School and Pennsylvania University Medical School...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 3 minutes read

Stem cell treatment for Duchenne muscular dystrophy tested in dogs

by Heidi Nicholl

A team of scientists based in France and Italy have published work showing a huge improvement in the condition of dogs suffering from a canine version of muscular dystrophy when treated with adult stem cells. Duchenne muscular dystrophy is a serious disease that affects 1 in every...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
9 June 2009 • 2 minutes read

Gene therapy hope for muscle disorder

by BioNews

US researchers have begun a clinical trial to test a new gene therapy treatment for Duchenne muscular dystrophy (DMD), an inherited muscle-wasting disorder. The team, based at the Columbus Children's Hospital in Ohio, will test the safety and effectiveness of gene injections in six affected boys aged 8-12 years...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Genes influence emotional memory

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
13 June 2022 • 2 minutes read

Drop in diversity of blood stem cells leads to old-age health issues

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856