PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsAdult tissue reprogrammed into stem cells faster

BioNews

Adult tissue reprogrammed into stem cells faster

Published 4 December 2009 posted in News and appears in BioNews 537

Author

Dr Rachael Panizzo

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.

Researchers at the US Massachusetts Institute of Technology (MIT), lead by Professor Rudolf Jaenisch, have identified genetic pathways that can speed up the process of reprogramming mature adult cells into stem cells, known as induced pluripotent stem cells (iPS cells)....

Researchers at the US Massachusetts Institute of Technology (MIT), lead by Professor Rudolf Jaenisch, have identified genetic pathways that can speed up the process of reprogramming mature adult cells into stem cells, known as induced pluripotent stem cells (iPS cells).


First described by Professor Shinya Yamanaka at Kyoto University in 2006, iPS cells can be generated by introducing four key stem cell genes - Oct3/4, Sox2, Klf4 and c-Myc - into adult cells. The reprogrammed cells have the same properties as embryonic stem cells (ES cells) and are pluripotent - they have the potential to grow into any other cell type in the body.


This genetic reprogramming is a slow process taking several weeks, and with low efficiency. The MIT researchers discovered that they could accelerate this process, by blocking the p53/p21 genetic pathway, or overactivating the Lin28 or Nanog genes. Altering the p53/p21 genetic pathway and the Lin28 gene reduced the amount of time to generate iPS cells, by speeding up the rate of cell divisions, whereas overactivating the Nanog gene achieved this independently of cell divisions. These two methods of accelerating the reprogramming process are distinct, and shed light on what genetic pathways are involved in reprogramming.


Published in the journal Nature, the researchers also discovered that the generation of iPS cells is a random and continuous process. They found that more than 90 per cent of cells expressing the four key stem cells genes eventually generated iPS cells. In addition, all iPS cells were identical, whether they were generated early on or after several weeks in culture. The researchers concluded that there is no subset of 'stem-like' cells in the starting material that generate iPS cells, but instead that all cells have the potential to generate iPS cells, given enough time. They demonstrated that one method of accelerating the reprogramming process is to accelerate the rate of cell divisions.

Related Articles

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
1 November 2012 • 2 minutes read

Stem cell setback: Reprogrammed stem cells may induce immune response

by Dr Rebecca Robey

IPS (induced pluripotent stem) cells from mice can be recognised by their own immune system and destroyed, scientists at the University of California, San Diego, have found...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
1 April 2010 • 2 minutes read

DNA difference between stem cell types found

by Dr Rachael Panizzo

Researchers at the Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine have pinpointed key genetic differences between mouse embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells)....

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Reprogramming phenomenon lauded 'Best of 2008'

by Adam Fletcher

As 2008 drew to a close, Science magazine announced its annual top ten breakthroughs of the year, after considering novel research that 'paves the way for future discoveries'. Work in the field of cellular reprogramming was awarded pole position, ahead of a real-time video of a developing...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Reprogramming stem cell breakthrough

by Dr Jess Buxton

Two groups of scientists have managed to 'reprogramme' skin cells, retuning them to an embryonic-like state in which they regain the potential to develop into any type of body cell. The studies, published in the journals Cell and Science, pave the way for new research aimed...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Stem cells produced from 'reprogrammed' skin cells

by Ailsa Stevens

By Ailsa Taylor: Three independent research groups have reported successfully causing skin cells from adult mice to revert back to an embryonic stem cell-like state; a technique that could potentially help to resolve the ongoing ethical debate over stem cell research. Published in the journal Nature, this groundbreaking research could...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« President Obama founds new bioethics council

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
13 June 2022 • 2 minutes read

Drop in diversity of blood stem cells leads to old-age health issues

27 June 2022 • 2 minutes read

UK report reveals public attitudes to fertility, genomics and embryo research

27 June 2022 • 2 minutes read

Shortage of sperm donors despite men willing to donate

27 June 2022 • 2 minutes read

North East London CCG proposes offering three funded IVF cycles

27 June 2022 • 2 minutes read

Fibrosis drugs reverse ovarian ageing in mice

27 June 2022 • 2 minutes read

Gene implicated in motor neurone diseases discovered

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856