PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsAlzheimer's brain cells grown from skin cells of Down's syndrome patients

BioNews

Alzheimer's brain cells grown from skin cells of Down's syndrome patients

Published 31 January 2013 posted in News and appears in BioNews 645

Author

Dr Caroline Hirst

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).

Skin cells from volunteers with Down's syndrome have been turned into brain cells in order to provide a new model for researchers to study Alzheimer's disease...

Skin cells from volunteers with Down's syndrome have been turned into brain cells in order to provide a new model for researchers to study Alzheimer's disease.

People with Down's syndrome are at high risk of developing Alzheimer's disease and show the first signs of the disease around 40 years earlier than those in the general population. To try and understand why this is, Cambridge University, where this research took place, has also launched a separate £1 million brain imaging study.

In the current study, published in Science Translational Medicine, researchers used a two-step process to turn volunteers' skin cells into brain cells with Alzheimer's disease. The skin cells were first transformed into induced pluripotent stem (iPS) cells, which can be made to turn into almost any cell type in the body. Here, the iPS cells were turned into nerve cells which behaved identically to cells in the human brain.

After being grown for a short period of time in the lab, the newly-created cells showed all the characteristics of brain cells taken from Alzheimer's disease patients post-mortem. It is hoped that the cells will therefore provide an easier way for researchers to study how the disease starts and progresses.

Alzheimer's disease can take years or even decades to develop. As Dr Rick Livesey, who led the current study, said: 'One of the biggest challenges facing dementia researchers at the moment is a lack of good ways to track the disease over time. By using stem cells donated from people with Down's syndrome, we have been able to track how the disease develops over a shorter time period than has been possible in the past'.

Related Articles

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
29 August 2013 • 3 minutes read

'Mini-brains' grown from stem cells

by Dr Sophie Pryor

Human stem cells have been used to grow miniature brains, 'organoids' that are just millimetres across and at an equivalent developmental stage as in a nine-week-old fetus...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
26 April 2013 • 2 minutes read

Brain cells from human embryonic stem cells restore mouse memory function

by Siobhan Chan

Stem cell therapy has improved memory and learning in brain-damaged mice, according to a study in Nature Biotechnology...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
21 March 2013 • 2 minutes read

Protection against dementia may run in families

by Dr Sophie Pryor

Families with higher levels of a protein linked to inflammation may be at a reduced risk of dementia....

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
20 March 2013 • 1 minute read

Cambridge University opens Stem Cell Institute

by John Brinsley

The University of Cambridge is to open a new stem cell institute following an £8million investment from two of the UK's largest medical research funders....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 March 2013 • 2 minutes read

Rare genetic mutation protective against Alzheimer's disease

by Dr Linda Wijlaars

A rare genetic mutation, found in about one percent of Icelanders in a recent study, appears to protect against Alzheimer's disease and age-related cognitive decline. It is the first mutation found to act in this way and could be a target for future drug therapy...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
30 January 2013 • 2 minutes read

Parkin gene researchers grow Parkinson's brain cells in lab

by George Frodsham

Human brain cells with Parkinson's disease have been successfully grown in a Petri dish, allowing researchers to study them in unprecedented detail. Researchers used a technique in which skin cells are transformed into induced pluripotent stem cells, which can then be made to change into any cell type — in this case, neurons...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
30 January 2013 • 2 minutes read

Brain cells made from skin cells, bypassing stem cell phase

by Cathy Holding

Mouse skin cells have been converted directly into neural precursor cells which go on to form the major cells in the brain...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
15 November 2012 • 2 minutes read

Brain cells made from skin

by Dr Lux Fatimathas

US researchers have successfully converted human skin cells directly into brain nerve cells, skipping an intermediate stem cell stage. The new technique has the potential to aid research into neurodegenerative disorders of the brain, such as Parkinson's and Alzheimer's....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
25 October 2012 • 2 minutes read

New Alzheimer's disease genes discovered

by Alison Cranage

International scientists including researchers at Cardiff University, UK and the University of Pennsylvania, USA have discovered five genetic variations associated with Alzheimer's disease. The findings are published in two papers in the journal Nature Genetics...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
17 October 2012 • 1 minute read

Cells grown in lab could help research into Alzheimer's disease

by Alison Cranage

Scientists at Northwestern University, Chicago have transformed stem cells into a key type of brain cell that dies early in Alzheimer's disease. Their findings will allow scientists to study what causes the cells to die in Alzheimer's, potentially paving the way for new treatments....

Leave a Reply Cancel reply

You must be logged in to post a comment.

« One percent of human genes 'can be shut down without causing serious disease'

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856