PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsEgg cells remain dormant for decades by putting mitochondria to sleep

BioNews

Egg cells remain dormant for decades by putting mitochondria to sleep

Published 25 July 2022 posted in News

Author

Eleanor Gallegos

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.

Early human oocytes remodel their metabolic activity, which enables them to remain dormant and reproductively viable for decades...

Early human oocytes remodel their metabolic activity, which enables them to remain dormant and reproductively viable for decades.

Humans form oocytes during fetal development. These oocytes then undergo cellular arrest and remain dormant in the ovaries for up to 50 years. During dormancy the oocytes maintain mitochondrial activity to generate energy for essential cell processes. This energy generation produces reactive oxygen species (ROS) as by-products. ROS are highly reactive oxygen-containing molecules which are harmful in high concentrations and can damage oocytes causing cell death. A paper published in Nature has revealed that oocytes can alter their metabolic pathways to limit the production of ROS.

'Humans are born with all the supply of egg cells they have in life. As humans are also the longest-lived terrestrial mammal, egg cells have to maintain pristine conditions while avoiding decades of wear-and-tear.' said Dr Aida Rodriguez, postdoctoral researcher at the Centre for Genomic Regulation (CRG) in Barcelona, Spain, and first author of the study. 'We show this problem is solved by skipping a fundamental metabolic reaction that is also the main source of damage to the cell. As a long-term maintenance strategy, it's like putting batteries on standby mode. This represents a brand new paradigm never before seen in animal cells,'.

The researchers studied Xenopus (African clawed frog) and human oocytes in early- and late-stages of development. Live imaging showed that early human and Xenopus oocytes do not generate any detectable ROS signal.

Mitochondria contain five complexes, I-V, which perform the chemical reactions needed to generate energy in a cell. The researchers inhibited each of these complexes in Xenopus oocytes and found that while early- and late-stage oocytes died upon inhibition of complexes II-V, 78 percent of early-stage oocytes survived if complex I was inhibited, suggesting this complex is not used at this stage of development.

The researchers then examined whether the subunits which make up complex I are depleted in early human oocytes and found that they were either absent or at very low levels. When studying ROS levels and complex I assembly, they found that ROS start to build up as complex I is formed.

These results show that complex I is absent in early human oocytes which limits ROS production and the related cell damage. This metabolic remodelling helps maintain the reproductive capacity of early oocytes for the years in which they remain dormant.

The researchers have proposed that the absence of complex I in early human oocytes could be exploited for other purposes such as cancer treatment.

'Complex I inhibitors have previously been proposed as a cancer treatment. If these inhibitors show promise in future studies, they could potentially target cancerous cells while sparing oocytes,' explained senior author Dr Elvan Böke, group leader in the Cell and Developmental Biology programme at the CRG.

These results could have life-changing effects on the quality of life of young women post cancer treatment by avoiding infertility which can result from chemotherapy.

Sources and References

  • 20 July 2022
    Nature
    Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I
  • 20 July 2022
    Centre for Genomic Regulation
    Human eggs remain healthy for decades by putting 'batteries on standby mode'
  • 21 July 2022
    Cosmos Magazine
    How do human eggs stay dormant and reproductively healthy for decades in the ovaries?
  • 20 July 2022
    Technology Networks
    Egg cells maintain reproductive longevity by switching to 'standby mode'
  • 20 July 2022
    STAT News
    Eggs can survive decades without signs of aging. Now, scientists may know why

Related Articles

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
Comment
11 April 2022 • 5 minutes read

Why IVF does not affect ovarian reserves

by Professor Adam Balen and 1 others

Recently the 'reality' television star Kourtney Kardashian claimed that the IVF treatment she received had 'put her into the menopause' in the trailer for a new series of 'Meet the Kardashians'...

PET BioNews
News
30 April 2021 • 2 minutes read

Ageing impairs critical final egg maturation stage

by Dr Melanie Krause

Oocytes mature differently in older women, in a process that could contribute to a decrease in fertility, a study from scientists in Barcelona, Spain has shown...

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
News
14 February 2020 • 2 minutes read

Metabolic compound may reverse fertility ageing in women

by Jennifer Frosch

A metabolic compound can reverse the ageing process of eggs in mice and could lead to new non-invasive treatments for improving fertility in older women, researchers say...

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
News
31 January 2020 • 2 minutes read

Primate ovarian ageing study has implications for human fertility

by Alegria Vaz Mouyal

Scientists from China and the USA have used non-human primate ovaries to improve understanding of why female fertility declines with age...

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
News
15 February 2013 • 2 minutes read

Reduced DNA egg repair may explain age-related fertility fall-off

by Yick Siew Tan

A slowdown in DNA repair mechanisms, one of which involves the BRCA genes implicated in cancer, may partly explain why women's eggs rapidly decline in both quantity and quality in middle age...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Haemophilia B gene therapy reduces risk of bleeding

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
13 June 2022 • 2 minutes read

Drop in diversity of blood stem cells leads to old-age health issues

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856