PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsiPS stem cells repair damaged mouse hearts

BioNews

iPS stem cells repair damaged mouse hearts

Published 27 July 2009 posted in News and appears in BioNews 518

Author

Dr Will Fletcher

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).

Induced pluripotent stem (iPS) cells have been used to repair damaged heart tissue in mice by a team from the Mayo Clinic in Rochester, Minnesota, US. iPS cells are adult cells that are reprogrammed to act like embryonic stem cells - in this case the iPS cells were derived from ordinary fibroblasts (cells that contribute to scars such as those resulting from a heart attack). When the cells were injected into mice whose hearts had been damaged by a heart attack they improved both...

Induced pluripotent stem cells (iPS cells)  have been used to repair damaged heart tissue in mice by a team from the Mayo Clinic in Rochester, Minnesota, US. iPS cells are adult cells that are reprogrammed to act like embryonic stem cells - in this case the iPS cells were derived from ordinary fibroblasts (cells that contribute to scars such as those resulting from a heart attack). When the cells were injected into mice whose hearts had been damaged by a heart attack they improved both the structure and function of the heart. This proof-of-concept study, published in the online issue of the journal Circulation, is the first attempt to use iPS cells to treat heart disease and shows a potential practical use for these experimental cells.


Stem cells offer a vast range of possibilities for regenerative medicine because they can be coaxed into forming 'lab-dish' replacements for cells from the heart, liver, skin, eye, nerve or brain. Since iPS stem cells come from adult tissue their use is considered less controversial than embryonic stem cells that come from embryos only a few days old. Another advantage is that iPS cells are derived from a patient's own cells, so their use effectively eliminates the risk of organ rejection and the dangers associated with anti-rejection drugs. The eventual goal is to one day be able to use a patient's own cells to repair their heart instead of replacing it with a donated heart which are in short supply.


'This study establishes the real potential for using iPS cells in cardiac treatment,' says Dr Timothy Nelson, the study's principal author, adding: 'Bioengineered fibroblasts acquired the capacity to repair and regenerate infarcted hearts (hearts with an area of tissue death due to a local lack of oxygen).'


There are several ways to make iPS cells but in this study Nelson and his team used a virus to transplant genes that 'turned back the clock' on the fibroblast cells. Then, instead of coaxing the iPS cells into a specific type of heart tissue, they transplanted the iPS cells in their most embryonic state. It was found that only two weeks after transplantation the iPS cells had begun making different types of tissue such as heart muscle and blood vessels. Within four weeks the team discovered the cells had actually managed to stop progression of structural damage, restore heart muscle performance lost after the heart attack, and regenerate tissue at the site of the damage.


'We're taking advantage of a diseased tissue environment that is sending out a distress signal that is asking the tissue to repair itself... when we put these iPS cells in, they are able to respond,' Nelson said. ‘They were able to respond to this damaged environment and spontaneously give rise to the appropriate tissues and create new tissues within that diseased heart,' he continued, adding 'that is a key wow factor of this paper.'

Related Articles

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
12 November 2012 • 2 minutes read

Stem cells used to successfully treat damaged heart muscle in mice

by Dr Sophie Pryor

A naturally occurring protein can activate stem cells in mouse hearts, producing new muscle cells to replace the tissue damaged by a heart attack, UK scientists have found...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
1 April 2010 • 2 minutes read

DNA difference between stem cell types found

by Dr Rachael Panizzo

Researchers at the Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine have pinpointed key genetic differences between mouse embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells)....

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
3 September 2009 • 2 minutes read

Skin cells reprogrammed to create retina cells

by Dr Will Fletcher

Light-sensing retinal eye cells have been grown from human skin cells for the first time. This raises the future possibility of restoring vision to patients with retinas damaged by certain degenerative diseases, by growing rescue or repair cells from the patient's skin...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

iPS cells created safe for human use

by Dr Antony Starza-Allen

Researchers in the UK and Canada have successfully created induced pluripotent stem (iPS) cells suitable for potential future use in humans. iPS cells are adult cells (in this case skin cells) that have been reprogrammed into a pluripotent embryonic-like state, able to divide into any cell in...

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
News
9 June 2009 • 2 minutes read

Adult stem cells may lead to new infertility treatment

by Dr Will Fletcher

A special class of adult stem cells, known as human induced pluripotent stem (iPS) cells, has for the first time been reprogrammed into cells that develop into human eggs and sperm. The research, carried out by members of the University of California, Los Angeles (UCLA)'s Broad...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
9 June 2009 • 2 minutes read

Skin-derived stem cells treat Parkinson's disease in rats

by Evelyn Harvey

Nerve tissue derived from stem cells made from reprogrammed skin developed into normal brain tissue and relieved symptoms of Parkinson's disease in rats, in a study published in the journal Proceedings of the National Academy of Sciences of the USA (PNAS) last week. Scientists at the Whitehead...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Special offer for 'genome scan' customers willing to participate in research

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
13 June 2022 • 2 minutes read

Drop in diversity of blood stem cells leads to old-age health issues

6 July 2022 • 1 minute read

Frozen embryo transfers linked to high blood pressure in pregnancy

5 July 2022 • 1 minute read

Anorexia in pregnancy linked to increased risk of complications

5 July 2022 • 2 minutes read

Pregnancy after breast cancer treatment does not increase risk of recurrence

5 July 2022 • 1 minute read

No difference between fresh and frozen sperm for IUI

4 July 2022 • 2 minutes read

Shorter IVF protocol reduces risk of OHSS

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856