PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsOrganoids mimic the early development of the heart in mouse embryos

BioNews

Organoids mimic the early development of the heart in mouse embryos

Published 13 November 2020 posted in News and appears in BioNews 1072

Author

Jennifer Frosch

PET BioNews

Organoids can be used to study early stages of heart development in mouse embryos, scientists say...

Organoids can be used to study early stages of heart development in mouse embryos, a new study shows.

Researchers from the École Polytechnique Fédérale de Lausanne, Switzerland, have reported that they were able to produce a mouse heart organoid from embryonic stem cells, which displayed essential features of an early developing heart. They suggested that this reveals a novel application of organoids for studying early embryonic stages of development.

'One of the advantages of embryonic organoids is that, through the co-development of multiple tissues, they preserve crucial interactions that are necessary for embryonic organogenesis,' said Dr Giuliana Rossi, lead author of the study. 'The emerging cardiac cells are thus exposed to a context similar to the one that they encounter in the embryo.'

In their study, published in Cell Stem Cell, the team exposed mouse embryonic stem cells to a mix of three factors involved in promoting heart growth. One week later, the stem cells self-organised into so-called gastruloids: organoids with an embryo-like organisation, which displayed signs of early heart development. The cell aggregates not only expressed several genes known to regulate cardiovascular development, but also generated a structure resembling a vascular network. Furthermore, the researchers found an 'anterior cardiac crescent-like domain' in the gastruloids, which even produced a beating heart tissue. Similar to the muscle cells of the embryonic heart, this area was also sensitive to calcium ions.

Organoids have been mostly the focus of research into the generation of adult tissues and organs for pharmaceutical and medical research. In their new publication, Professor Matthias Lütolf and his team suggested that they can also provide a system to study early embryonic stages of the developing heart and other organs, as they preserve important tissue-tissue interactions.

Sources and References

  • 10/11/2020
    Cell Stem Cell
    Capturing cardiogenesis in gastruloids
  • 11/11/2020
    École polytechnique fédérale de Lausanne
    Organoids produce embryonic heart

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
17 December 2021 • 2 minutes read

Genes involved in cardiac development and disease identified

by Hannah Flynn

Genes that could be involved in heart development have been identified using a method that looks for candidate genes not solely expressed in heart tissue.

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
16 July 2021 • 2 minutes read

Mouse eggs made from mouse stem cells matured in vitro

by Ruth Retassie

An in vitro gametogenesis (IVG) breakthrough has been achieved as mouse stem cells have been used to create egg cells that have successfully developed into live mice when used in IVF...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
2 July 2021 • 2 minutes read

Most sophisticated in vitro mouse embryo created from stem cells

by Stella Hume

A mouse embryo has been developed artificially in a lab from embryonic stem cells that represents the most sophisticated in vitro mammalian model ever created...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
28 May 2021 • 2 minutes read

Self-organising heart organoids beat like a 25-day-old human embryo's heart

by Bernie Owusu-Yaw

Self-organising heart organoids using human pluripotent stem cells have been developed by researchers from the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (I

PET BioNews
News
11 February 2021 • 2 minutes read

Making bigger 'mini-organs' for research

Another breakthrough has been made towards the development of artificially-engineered tissue that mimics real organs that can be used for research...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
12 June 2020 • 3 minutes read

Human stem cells used to mimic early embryo development

by Jennifer Frosch

Using human stem cells, scientists from the University of Cambridge have developed a model for early embryo development...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
24 April 2020 • 2 minutes read

Virtual embryo gives insight into early embryo development

by Purvi Shah

The first 'virtual embryo' has been created to help understand early embryo development and the evolution of one single cell into many cells of different types...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Epigenetic risks during pregnancy reduced with lifestyle intervention

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

15 August 2022 • 2 minutes read

Call to end ban on HIV-positive partner gamete 'donation'

15 August 2022 • 2 minutes read

Melanoma invades new tissues using nerve cell gene

15 August 2022 • 2 minutes read

Exceeding alcohol limits could damage DNA and accelerate ageing

15 August 2022 • 2 minutes read

Blood cell gene mutations affect mitochondria, increasing cardiovascular disease risk

15 August 2022 • 2 minutes read

Jumping gene helps immune system fight viruses

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856