PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsVirtual embryo gives insight into early embryo development

BioNews

Virtual embryo gives insight into early embryo development

Published 24 April 2020 posted in News and appears in BioNews 1044

Author

Purvi Shah

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

The first 'virtual embryo' has been created to help understand early embryo development and the evolution of one single cell into many cells of different types...

The first 'virtual embryo' has been created to help understand early embryo development and the evolution of a single cell into many cells of different types.

Publishing their results in the journal Cell, researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and from the University of Padua School of Medicine, Italy, have described the development of every single cell in the embryo.

'How are the many different cell types in the body generated during embryonic development from an egg, which is only a single cell? This is one of the most fundamental questions in biology,' said Dr Pierre Neveu, group leader at EMBL, explaining the rationale behind the study.

All organisms begin as a single cell, which divides, producing new cell lines predetermined to become various tissues and structures. A representation of cell lineages in embryo development, accounting for every cell in space and time, has not been achieved until now.

'So far we have lacked a comprehensive understanding of the gene expression programmes. These instruct individual cells to form the different cell types necessary to build an embryo,' explained first author Dr Hanna Sladitschek.

The researchers modelled the virtual embryo on a marine organism called Phallusia mammillata. Each individual organism has the same number of cells, which makes it easier to reconstruct its embryonic development by combining observations from many samples.

To generate the virtual embryo, the team used high-resolution single-cell transcriptome. The transcriptome is all the RNA molecules in a cell, providing a snapshot of which genes are switched on or off in that cell at a given time.

This was combined with data from microscopic observation of the structures formed by P. mammillata dividing cells, to generate a detailed four-dimensional (4D) atlas of embryonic development from one cell to 64 cells.

Furthermore, by using high-level single-cell RNA sequencing, the team designed a computational framework, MorphoSeq, which categorised the embryos into cell types, reconstructed directly from the physical position and lineage history of each cell. From there, the cells were linked to the high-resolution 4D imaging data.

After the first seven cell divisions, the nerve cord, brain, germ cells, blood cell precursors, and muscles are already determined. This study presents the first full description of early development accounting for every single cell in an embryo.

'Our model shows that it is possible to know the location and history of an individual cell by analysing its gene expression,' said Dr Neveu. 'In addition, we find that while the regulation of gene expression is very precise within an embryo, differences in developmental timing explain the observed variation between individual embryos.'

The researchers hope that the MorphoSeq framework can be readily adapted to mammals' embryonic development.

'Our studies represent a leap forward in the emerging field of developmental genomics,' said co-author Dr Lars Hufnagel, from the University of Padua School of Medicine. 'Now that we have worked with an organism with a small number of cells, it will, of course, be very interesting to extend our work to mammals, which have many more cells!'

Sources and References

  • 20/04/2020
    EMBL
    Unprecedented single-cell studies in virtual embryo
  • 21/04/2020
    labroots
    Virtual cell provides a close look at gene expression during development
  • 20/04/2020
    Cell
    MorphoSeq: Full Single-Cell TranscriptomeDynamics Up to Gastrulation in a Chordate

Related Articles

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
4 July 2022 • 2 minutes read

Genetic and epigenetic causes of IVF embryo arrest discovered

by Dr George Janes

Changes that occur to DNA that could cause IVF embryos to stop dividing have been identified...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
18 June 2021 • 2 minutes read

Early pregnancy loss may be explained by embryo development discovery

by Dr George Janes

Key molecular events regulating early embryo development have been revealed for the first time...

PET BioNews
News
13 November 2020 • 1 minute read

Organoids mimic the early development of the heart in mouse embryos

by Jennifer Frosch

Organoids can be used to study early stages of heart development in mouse embryos, scientists say...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
18 September 2020 • 2 minutes read

Embryo development 'clock' differs in mouse and human

by Emma Lamb

A newly discovered mechanism explains why pregnancies last longer in some species than others...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
12 June 2020 • 3 minutes read

Human stem cells used to mimic early embryo development

by Jennifer Frosch

Using human stem cells, scientists from the University of Cambridge have developed a model for early embryo development...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
27 July 2018 • 2 minutes read

Mouse artificial 'embryo' created from stem cells

by Dr Melanie Krause

For the first time, an artificially create a mouse embryo has successfully passed a critical developmental milestone in the lab...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« High court orders fertility clinic to release deceased man's records

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856