PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsWe all have hundreds of defective genes, study finds

BioNews

We all have hundreds of defective genes, study finds

Published 29 October 2010 posted in News and appears in BioNews 582

Author

Owen Clark

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

A four-year, £75m project to discover novel variations between human genomes has completed its pilot phase. Among the 1000 Genomes Project's initial findings are each person carries around 250 - 300 genetic mutations. Scientists have previously linked 50 - 100 of these mutations to inherited diseases...

A four-year, £75m project to discover novel variations between human genomes has completed its pilot phase. Among the 1000 Genomes Project's initial findings are each person carries around 250 - 300 genetic mutations. Scientists have previously linked 50 - 100 of these mutations to inherited diseases.

Eight million previously unknown variations were found in SNP (single nucleotide polymorphism) - the building blocks of genes. The study also revealed one million structural variations, such as repeated or deleted DNA sequences and rare differences in the genetic code that occur in only one percent of the population.

The pilot phase of the project sought to develop and compare several different methods of genome sequencing on a sample population of 800 people. The project will go on to sequence the genomes of 2500 people from each of the five major population groups, in the hope at least 95 percent of existing genetic variations will be revealed.

Co-chair of the project Dr Richard Durbin told the Guardian: 'In the last 10 years, DNA sequencing technology has advanced dramatically so it becomes feasible to systematically sequence many people to find genetic variants'. He continued: 'Over half those differences haven't been seen before, and these have provided a more complete catalogue of variation than was available previously'.

179 people had their whole genomes sequenced during the project's pilot phase using 'low-coverage' sequencing - in which a small amount of random DNA is sequenced for each individual. 697 people only had their protein-coding regions called 'exons' sequenced, which are responsible for most important variations, despite accounting for a minority of DNA.

The project found 'low-coverage' and 'exon' sequencing could be used with relatively low error rates. The results of the study were published as part of a series of papers in the journals Nature, Science and Genomic Research.

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
28 February 2013 • 2 minutes read

Rare genetic variants unexpectedly common in humans

by Dr Linda Wijlaars

Rare genetic variants - those carried by fewer than five in 1,000 people - are much more common than previously thought, according to two studies published in Science...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 November 2012 • 2 minutes read

Study highlights variation in human mutation rates

by Dr Sarah West

In the first direct measure of new mutation rates in humans, researchers have found that when parents pass their genes down to their children an average of 60 mutations are introduced into the genetic code during the process...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
25 June 2010 • 1 minute read

1,000 Genomes Project completes first phase

by Dr Vivienne Raper

The largest study of genetic differences between people to date - the 1,000 Genomes Project - has completed its pilot studies. The data is now freely available...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
9 June 2009 • 2 minutes read

New project aims to read 1000 human genomes

by Dr Jess Buxton

An international project to read the entire genetic code of at least 1000 individuals will result in a comprehensive catalogue of human variation that will accelerate efforts to identify genetic factors involved in health and disease, scientists announced last week. The '1000 Genomes Project' will take...

PET BioNews
News
9 June 2009 • 2 minutes read

$10m dollar race to sequence 100 genomes in 10 days

by Dr Antony Starza-Allen

The X Prize Foundation is offering $10m to the first private team that is able to sequence 100 human genomes in just ten days. It would currently take months, at the cost of millions of dollars, to sequence an individual human genome. Francis Collins, director of the...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Canadian court allows woman to seek information on sperm-donor father

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856