PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsCommentWhat does genome editing mean for Down's syndrome?

BioNews

What does genome editing mean for Down's syndrome?

Published 17 August 2018 posted in Comment and appears in BioNews 963

Author

Professor Robin Lovell-Badge

Chair of Trustees
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

The recent Nuffield Council on Bioethics report 'Genome Editing and Human Reproduction: Social and Ethical Issues' has been both welcomed and criticised...

The recent Nuffield Council on Bioethics report 'Genome Editing and Human Reproduction: Social and Ethical Issues' has been both welcomed and criticised.

As is often the case with new reproductive technologies, some critics have raised concerns that new cases of conditions such as Down's syndrome could be eliminated by genome editing, and that the lives of existing people with this condition could be somehow devalued. Is there any factual basis for these concerns?

How might genome editing impact on Down's syndrome?

Most genome editing approaches use an enzyme to cut DNA, and a guide to induce the cut to happen at a designated place in the genome. Cellular mechanisms then usually repair the DNA, and these mechanisms can be enlisted to make quite precise changes, including inactivating or changing specific genes.

In theory, somatic genome editing – that is, making changes to an individual's genome that will not be inherited by any children that individual goes on to have – could be used to address some of the specific traits associated with Down's syndrome by making changes to one copy of a gene. This might help, for example, with the loss of nerve cells that leads to weak muscles, although defining the precise gene(s) responsible for other Down's syndrome traits is difficult.

However, one of the biggest challenges for such somatic uses of genome editing is how to introduce the genome editing components safely and efficiently into the billions of relevant cells in the patient. It will take some time to solve this challenge.

What about using genome editing on the entire extra copy of chromosome 21?

There has been research on iPS (induced pluripotent stem) cells derived from people with Down's syndrome, in which an entire copy of chromosome 21 was either inactivated or completely eliminated, but this was not very efficient.

In theory, such methods could be applied somatically to a fetus or a newborn baby, but it would be difficult to deliver the genome editing components to enough cells for this to be effective.

What about using genome editing on embryos?

The use of genome editing on very early embryos would take us from the realm of somatic genome editing to the realm of germline genome editing – that is, making changes to an individual's genome that could be inherited by any children that this individual goes on to have.

It should be easier to induce loss of an extra chromosome 21 in an early embryo than in a later embryo, because the genome editing components would only need to be introduced into a small number of cells.

The problem is, it is not possible to predict in advance which embryos will have trisomy 21 (that is, an extra copy of chromosome 21). Most cases of Down's syndrome occur de novo, meaning that the condition is genetically 'new' – it is not inherited from the parents. The chance of having child with Down's syndrome increases with maternal age, but never reaches a point where all embryos will inevitably have trisomy 21.

It would be possible (if costly) to check for trisomy 21 using preimplantation genetic testing, taking a few cells from early-stage embryos and screening them for chromosome number before transfer to the prospective mother's womb. But if you have already gone to the trouble of doing this, you can just choose to transfer an embryo that does not have an extra chromosome 21. Genome editing is surplus to requirements.

A special case is parents with Down's syndrome. People with Down's syndrome can have children, and there is a possibility (around 35 percent for women) that their child will inherit the condition. Again, preimplantation genetic testing can be used – and has been used – in such scenarios to avoid transmission of the condition. Again, genome editing is surplus to requirements.

If prospective parents wish to avoid having a child with Down's syndrome, then prenatal testing – particularly noninvasive prenatal testing (NIPT), which uses the small amount of fetal DNA present in the pregnant woman's bloodstream – will remain the most practical option for the foreseeable future. NIPT can be used from 10 weeks in pregnancy to screen for three copies of chromosome 21. Uptake varies between countries, with new cases of Down's syndrome all but disappearing in Iceland and Denmark.

Conclusion

While it is theoretically possible to use germline genome editing to avoid having a child with Down's syndrome, in practice this is – and will almost certainly remain – highly impractical.

More likely, but still some way off becoming reality, is that we will find ways to use somatic genome editing to ameliorate some of the health complications that accompany Down's syndrome. There is evidence that at least some parents of people with Down's syndrome would welcome this possibility.

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Reviews
28 February 2020 • 3 minutes read

Podcast Review: The Gene Gap - What does it mean to be human?

by Alegria Vaz Mouyal

Have you ever wondered what it would be like to be a parent of a child with Down's syndrome?...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
11 October 2019 • 2 minutes read

Rare genetic quirk twice as common as thought

by Dr Laura Riggall

Inheriting two copies of a chromosome from a single parent is more common than previously thought, according to a new study...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Comment
30 July 2018 • 4 minutes read

The Nuffield report on genome editing and the equality of persons

by Dr Calum MacKellar

A lot of hard work was invested into the UK's Nuffield Council on Bioethics' new, pioneering, report entitled 'Genome Editing and Human Reproduction: Social and ethical issues'. But a lot more work is still necessary to gain an appropriate overview of inh

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Comment
23 July 2018 • 5 minutes read

Genome editing and human reproduction: The Nuffield Council on Bioethics' report

by Dr Peter Mills

Judging from the coverage of the latest Nuffield Council on Bioethics report, 'Genome Editing and Human Reproduction: Social and ethical issues', the subject of altering genetic inheritance in humans has become no less incandescent in recent years...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
16 July 2018 • 2 minutes read

Heritable genome editing could be acceptable, says leading ethics body

by Dr Alexander Ware

In a new report, the UK's Nuffield Council on Bioethics has concluded that the use of heritable genome editing 'could be ethically acceptable in some circumstances'...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Let's get fertility preservation right for everyone

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.
easyfundraising
amazon

This month in BioNews

  • Recent
27 June 2022 • 4 minutes read

Thirty years of PET: our 'Fertility, Genomics and Embryo Research' report

27 June 2022 • 5 minutes read

Children's rights and donor conception: What next?

20 June 2022 • 4 minutes read

The problems with lifting donor anonymity earlier

20 June 2022 • 6 minutes read

An adaptive act: How should human fertilisation and embryology legislation respond to scientific and technological change?

13 June 2022 • 1 minute read

A new look for BioNews

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856