PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsCRISPR success in repairing sickle-cell anaemia mutation

BioNews

CRISPR success in repairing sickle-cell anaemia mutation

Published 19 October 2016 posted in News and appears in BioNews 873

Author

Sarah Gregory

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

Researchers have used the CRISPR/Cas9 genome-editing technique to correct the mutation that causes sickle-cell anaemia...

Researchers have used the CRISPR/Cas9 genome-editing technique to correct the mutation that causes sickle-cell anaemia.

The researchers used a modified version of the technique to correct the mutation in human bone-marrow stem cells. They were able to show that these edited healthy cells could survive long term in mice at a level that may be high enough to benefit human patients.

'We're very excited about the promise of this technology,' said Jacob Corn, a senior author on the study and scientific director of the Innovative Genomics Initiative, which conducted the joint study between University of California, Berkeley, and the University of California San Francisco (UCSF). 'There is still a lot of work to be done before this approach might be used in the clinic, but we're hopeful that it will pave the way for new kinds of treatment for patients with sickle-cell disease.'

Sickle-cell anaemia is caused by a single mutation in the gene that codes for haemoglobin protein. This mutation causes the characteristic 'sickle-shaped' blood cells which cause blockages in blood vessels, pain, and organ failure.

There have been previous attempts to use CRISPR/Cas9 to remove the mutated sickle-cell gene and insert a correct version of the gene into the bone-marrow stem cells. However, gene insertion is often unsuccessful in these slow-dividing stem cells.

The research team modified the existing genome-editing process by adding an additional DNA sequence tag. This increased the efficiency of the gene repair by up to 25 percent.

They then infused mice with one million edited cells to test if the healthy gene would be maintained long term. Although cells with mutated DNA were more successful at proliferating, after 16 weeks an average of 2.3 percent of the edited cells remained in five mice. 

Although this is a low percentage, evidence suggests that even this small change can have a positive effect on a person with the disease.

'This is an important advance because for the first time we show a level of correction in stem cells that should be sufficient for a clinical benefit in persons with sickle-cell anaemia,' said co-author Dr Mark Walters, a paediatric haematologist and oncologist and director of UCSF Benioff Oakland’s Blood and Marrow Transplantation Program.

Other scientists caution that this level may not be sufficient. 'This is an important incremental step in bringing this sort of gene therapy to the clinic, but you need a little higher rate of correction to make it a therapy that is likely to be successful,’ Dr John Strouse, a haematologist at Duke University who was not involved in the study, told the Los Angeles Times.

The researchers say that years of study will be needed before the genome-editing could be safely introduced in humans.

The study was published in the current issue of Science Translational Medicine.

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
26 February 2018 • 2 minutes read

Hopes of sickle cell cure with genome editing

by Anna Mallach

Genome editing has been used to correct the mutation causing sickle cell disease in stem cells from the blood of patients...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
7 July 2017 • 2 minutes read

Huntington's disease in mice partly reversed using CRISPR

by Meghna Kataria

Eliminating the faulty protein that causes Huntingdon's disease goes some way to reversing disease progression in mice, a study has found...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
10 March 2017 • 2 minutes read

Sickle cell reversed with gene therapy in teenager

by Ayala Ochert

A teenage boy in France appears to have been cured of sickle cell disease using a gene therapy. He has been free of all signs of the disease for 15 months...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
16 January 2017 • 2 minutes read

Anti-CRISPR - an off-switch for genome editing

by Dr Özge Özkaya

Scientists have discovered a new set of proteins that can block the CRISPR/Cas9 system...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Comment
21 November 2016 • 4 minutes read

Therapeutic editing of the human genome — Jewish bioethical perspectives

by Dr Avi Lerner

Jewish bioethics may help to broaden the discussion of the ethical concerns that emerge from editing the human genome...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 September 2016 • 3 minutes read

CRISPR cancer therapy trial gets go-ahead in US

by Rachel Reeves

The first in-human use of the genome-editing technology CRISPR has been approved by a US federal safety board...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 September 2016 • 2 minutes read

CRISPR shrinks tumours in mice

by Dr Özge Özkaya

Scientists from China have managed to shrink the size of tumours in mice using CRISPR/Cas9 genome-editing technology...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
12 September 2016 • 2 minutes read

Study brings sickle-cell gene therapy one step closer

by Dr Nicoletta Charolidi

A genetically engineered virus that triggers the production of an alternative form of haemoglobin has reversed the symptoms of sickle cell disease in mice...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
18 April 2016 • 3 minutes read

CRISPR can't cut it against HIV

by James Brooks

Scientists testing whether the CRISPR genome-editing technique could effectively kill HIV in infected cells have found that, while the approach works in most cases, it can also cement the virus's presence...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
12 December 2012 • 2 minutes read

Sickle cell disease reversed in mice

by Mehmet Fidanboylu

The blood condition sickle cell disease may be reversed by turning off a single gene, according to scientists in the USA. By inactivating a single gene in red blood cells the researchers were able to alleviate symptoms of the disease in mice, offering the hope of a potential new treatment for humans...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Mitochondrial donation technique used in Ukraine, doctors claim

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856