PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsGene linked to schizophrenia is key in early brain development

BioNews

Gene linked to schizophrenia is key in early brain development

Published 10 October 2017 posted in News and appears in BioNews 920

Author

Dr Charlott Repschläger

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

A gene associated with schizophrenia influences a critical stage of early brain development in mice...

A gene associated with schizophrenia influences a critical stage of early brain development in mice.

Researchers investigated a gene called ZFN804A; one of over 100 identified by a previous study as being linked to schizophrenia risk. ZFN804A is known to be significantly associated with schizophrenia, said Dr Yingwei Mao at Pennsylvania State University, and lead author of the current study.

'We provide molecular evidence showing that ZNF804A could contribute to psychiatric disorders like schizophrenia,' he said. The study supports the idea that early changes in neurodevelopment may trigger effects that are not seen till later in life. Schizophrenia usually manifests in late adolescence or early adulthood.

The researchers demonstrated that ZFN804A is necessary for the development of normal brain structure and function in mouse embryos. The gene influenced two crucial processes: proliferation, which is the replication of neuronal stem cells and migration, which is the movement of neuronal cells to specific locations within the developing brain.

'Disturbances to these processes may cause neuronal stem cells to develop into different types of cells or may cause neurons to migrate to different locations in the brain, changing neuronal circuitry and potentially leading to behavioural disorders like schizophrenia,' explained Dr Mao.

Using a yeast cell model, ZFN804A was also found to interact with at least nine genes that are involved in translating mRNA (messenger RNA) into proteins. This indicates that ZFN804A plays an important role in regulating the decoding of genes to proteins.

The researchers add that ZFN804A also interacts with other genes implicated in schizophrenia risk, highlighting the complexity of schizophrenia and the need to gain a better understanding of the underlying causes.

'Determining the role of ZNF804A is the first step in understanding how schizophrenia-associated genes contribute to abnormal brain development,' said Dr Mao. 'Understanding how these genes interact to contribute to the development of schizophrenia may allow us to identify the general pathway of the disease, potentially providing a better target for treatment.'

The study was published in Molecular Psychiatry.

Related Articles

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
14 January 2022 • 2 minutes read

Activity in stem cell-derived neurons predicts neural deficits in people with schizophrenia

by Tom Turner

For the first time, a biomarker for symptoms of psychiatric illness has been discovered using neurons derived from schizophrenia patients' own cells...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
11 October 2019 • 2 minutes read

Post-traumatic stress disorder has genetic component

by Jennifer Frosch

Developing post-traumatic stress disorder following traumatic events has a strong genetic component, a new study shows...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
22 June 2018 • 2 minutes read

Genome study finds shared genes in psychiatric disorders

by Grace O'Regan

A common genetic basis has been found for schizophrenia, major depression, attention deficit hyperactivity disorder (ADHD) and bipolar disorder, a new study has found this week...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
27 September 2017 • 2 minutes read

Brain has 'genetic calendar' for ageing

by Annabel Slater

A 'genetic lifespan calendar' of lifelong gene expression changes has been discovered in human and mouse brains...

Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
CC BY-SA 3.0
Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
News
20 September 2017 • 2 minutes read

Deficient diet linked to schizophrenia symptoms in mice

by Annabel Slater

Mice deprived of two essential fatty acids during pregnancy give birth to pups with schizophrenia-like symptoms...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
30 March 2016 • 2 minutes read

Genetic study gives insight into schizophrenia

by Jonathan Bestwick

A gene involved in managing the connections between brain cells appears to be associated with an increased risk of developing schizophrenia...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Genome editing targets beta-thalassemia in human embryos

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
13 June 2022 • 2 minutes read

Drop in diversity of blood stem cells leads to old-age health issues

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856