PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsGenome editing targets beta-thalassemia in human embryos

BioNews

Genome editing targets beta-thalassemia in human embryos

Published 10 October 2017 posted in News and appears in BioNews 920

Author

Dr Rachel Montgomery

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

A genome editing technique called 'base editing' has been used to correct the mutation causing the inherited blood disorder beta-thalassemia in human embryos...

A genome editing technique called 'base editing' has been used to correct the mutation causing the inherited blood disorder beta-thalassemia in human embryos.

Although all resulting embryos were mosaic, the researchers at Sun Yat-sen University, China say their study shows the technique could be used to correct genetic disorders caused by point mutations - a mistake in just one of the four bases of the genetic code.

'We are the first to demonstrate the feasibility of curing genetic disease in human embryos by base editor system,' said lead researcher Dr Junjiu Huang to the BBC.

Unlike the more common genome editing technology CRISPR/Cas9, base editing does not cleave DNA to make an edit, which could reduce the likelihood of off-target edits.

The study, published in Protein and Cell, follows earlier work by the same team who, in 2015, were the first to use CRISPR/Cas9 on human embryos - also in an attempt to correct the beta-thalassemia mutation (see BioNews 799).

The researchers took nuclei from skin cells taken from a patient with the disorder, and inserted them into empty donor eggs, creating human embryos carrying the mutation. They then scanned the DNA of the embryos for the point mutation, which was a guanine base in the place of an adenine, and changed it back using an enzyme.

If used clinically, the team suggest the technique could one day prevent beta-thalassemia being passed onto future generations, or even be used to treat patients. However, the resulting embryos in the current study were mosaic, with about 20 percent of cells successfully corrected, and in some cases the technique introduced other mutations instead of fixing them.

'It really isn't a rival to CRISPR/Cas9. It is a modified version with different attributes,' explained Dr Seth Shipman, a geneticist at Harvard Medical School, to online news site Gizmodo.

The edited embryos were not intended for implantation, a scenario which remains illegal in many countries, including the UK.

Professor David Liu – who was not involved in this study - developed the base editing technique at Harvard University last year. Speaking to the BBC, he explained that 'about two-thirds of known human genetic variants associated with disease are point mutations. So base editing has the potential to directly correct, or reproduce for research purposes, many pathogenic [mutations]'.

Professor Darren Griffin, a geneticist at the University of Kent, said that 'while this is undoubtedly a highly significant advance, it is important not to get carried away about its widespread utility if put into clinical practice. An embryo would still need to be diagnosed as abnormal, then the base editor applied, then re-diagnosed to make sure that it had worked. This would be an involved procedure that would be very expensive.' 

Professor Robin-Lovell-Badge at the Francis Crick Institute in London, told the BBC that this approach is unlikely to be used clinically anytime soon, adding that 'there would need to be far more debate, covering the ethics, and how these approaches should be regulated'.

'And in many countries, including China, there needs to be more robust mechanisms established for regulation, oversight, and long-term follow-up,' he said.


The latest developments in genome editing and embryo research will be discussed at the session 'What Next for Genome Editing? Politics and the Public', at the Progress Educational Trust's upcoming public conference 'Crossing Frontiers: Moving the Boundaries of Human Reproduction'.

The conference is taking place in London on Friday 8 December 2017. Full details - including sessions, speakers and how to book your place - can be found here.

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
19 June 2020 • 2 minutes read

CRISPR trial shows promising results for sickle cell and thalassaemia

by Javier Bautista

CRISPR genome editing has been successfully used to treat three patients with blood disorders in a clinical trial...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
30 November 2018 • 3 minutes read

China halts controversial 'genome-edited babies' research

by Rachel Siden

Authorities in China are moving to suspend the research activities of the scientists who claim to have modified the genomes of twin girls with CRISPR-Cas9...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
24 August 2018 • 3 minutes read

Scientists base-edit first viable human embryos

by Dr Alexander Ware

A new approach to treating Marfan syndrome may be on the horizon, thanks to developments in genome editing...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
16 July 2018 • 2 minutes read

Heritable genome editing could be acceptable, says leading ethics body

by Dr Alexander Ware

In a new report, the UK's Nuffield Council on Bioethics has concluded that the use of heritable genome editing 'could be ethically acceptable in some circumstances'...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
5 February 2018 • 2 minutes read

China has treated 86 people with CRISPR genome editing

by Meghna Kataria

China has administered CRISPR/Cas9 genome editing to at least 86 cancer patients, a new report has revealed. 

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
2 October 2017 • 2 minutes read

First genome editing of human embryos by UK scientists

by Paul Waldron

UK scientists have successfully edited the genome of human embryos to study the role of a gene key to the earliest stages of development...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
31 August 2017 • 3 minutes read

Disease-causing mutation edited out of human embryos

by Charlotte Spicer

Scientists have published their study confirming they are the first to correct a disease-causing mutation in human embryos using genome editing...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 March 2017 • 3 minutes read

First genome editing of normal human embryos

by Dr Katie Howe

Chinese scientists have successfully used genome editing to correct mutations in viable human embryos for the first time...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
24 April 2015 • 3 minutes read

Chinese scientists edit genes of human embryos

by Ayala Ochert

Chinese scientists report the first-ever genetic modification of human embryos using the CRISPR/Cas9 gene-editing technique, confirming rumours that these highly controversial experiments were underway...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Commission demands reform on experimental cell therapies

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

15 August 2022 • 2 minutes read

Call to end ban on HIV-positive partner gamete 'donation'

15 August 2022 • 2 minutes read

Melanoma invades new tissues using nerve cell gene

15 August 2022 • 2 minutes read

Exceeding alcohol limits could damage DNA and accelerate ageing

15 August 2022 • 2 minutes read

Blood cell gene mutations affect mitochondria, increasing cardiovascular disease risk

15 August 2022 • 2 minutes read

Jumping gene helps immune system fight viruses

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856