PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsCommentEpigenome-wide association studies (EWAS)

BioNews

Epigenome-wide association studies (EWAS)

Published 26 September 2012 posted in Comment and appears in BioNews 589

Authors

Dr Carolina Gemma

Dr Vardhman Rakyan

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

In recent years, significant progress has been made in identifying some of the genetic factors that underlie common complex diseases such as diabetes, obesity, hypertension and cancer. This has been possible due to the genome-wide association study (GWAS) approach that involves comparing genetic variants in large numbers of individuals that have the disease versus those that do not...

In recent years, significant progress has been made in identifying some of the genetic factors that underlie common complex diseases such as diabetes, obesity, hypertension and cancer. This has been possible due to the genome-wide association study (GWAS) approach that involves comparing genetic variants in large numbers of individuals that have the disease versus those that do not. In the last five years, approximately 600 GWASs have examined over 100 human diseases, uncovering more than 800 genetic variants associated with one or more diseases. However, in nearly every case, the majority of factors that cause the disease are still unknown. This has led to an interest in exploring non-genetic factors that could impact on disease etiology.

Epigenetics is the study of processes that regulate the expression of genes but, crucially, do not change the DNA sequence. Examples of epigenetic modifications include the addition of chemical groups (for example methyl groups) to the DNA - DNA methylation. During normal development, the cell tightly regulates DNA methylation. However, both environmental (such as diet and smoking) and stochastic factors can alter these DNA methylation profiles, resulting in aberrant DNA methylation marks, meaning some genes are turned on or off in an aberrant manner. The association between aberrant DNA methylation and cancer has been known for nearly 25 years, but the link with common non-malignant diseases (such as diabetes) is only just beginning to be explored.

Based on the experience from GWASs, it is inevitable that we will have to perform large-scale, systematic studies of epigenetic marks in a large number of individuals to properly understand the role of epigenetics in disease etiology, for example using epigenome-wide association studies (EWAS). But how do you conduct an EWAS? Compared with a GWAS, an EWAS represents a more challenging proposition, and below is a description of the key distinctions between GWAS and EWASs.

Firstly, unlike the genetic sequence, epigenetic marks can vary between tissues. Although almost any tissue can be used in a GWAS, the choice of tissue in an EWAS is therefore an important consideration. Typically, you sample only a few tissue types from a large number of live individuals: blood, hair, skin, buccal cells, and in some cases also muscle and fat biopsies. Consequently for diseases such as autoimmune disorders, a blood-based component, it should be possible to perform an EWAS. However, brain-based conditions may be harder to study in an EWAS, although in some diseases the aberrant epigenetic mark may be present in many/all tissues.

Secondly, another distinction between GWAS and EWAS is which epigenetic mark to profile, as several different types of epigenetic marks exist. To profile large numbers of individuals, the mark must be stable and amenable to high-throughput analysis, and currently DNA methylation is the most suitable mark for EWAS.

Thirdly, in a GWAS any disease-associated genetic variant found has to be causal for the disease, in other words the disease itself does not cause the genetic variation. However, given that epigenetic marks are responsive to the environment, in some cases altered physiology in the diseased individual may cause epigenetic perturbations. Therefore, what you end up studying is not a mark that predisposes to the disease, but rather a mark caused by the disease, which may have little to do with the disease aetiology. Therefore this may not be a very good target candidate for either therapeutic or predictive purposes.

In a typical GWAS, you normally compare thousands of overt disease-affected individuals with unrelated unaffected controls. This design, if used in the context of an EWAS, would not be able to distinguish whether epigenetic differences identified between the two groups occurred before or after the disease. Or whether any of the epigenetic differences were due to genetic differences between the two populations. For an effective EWAS, it is much better to perform longitudinal studies that follow initially disease-free individuals from birth. However, such studies are expensive and time-consuming, but do offer a method for distinguishing epigenetic variants that are causal for, or consequential to, the disease process. Monozygotic twins, genetically identical individuals brought up in very similar environments, are also valuable for EWASs, as they allow you to exclude genetic differences as the cause of the disease-associated epigenetic marks.

Despite the challenges of conducting an EWAS, such studies are already underway and there is reason to be optimistic that they will yield new insights into the causes of common diseases. The ultimate aim of EWAS, like GWAS, is to provide a better understanding of disease aetiology, and it is likely that no single approach will be able to completely define disease aetiology. However, the combination of GWAS and EWAS approaches, and other methods such as computational biology and functional studies of identified genetic or epigenetic variants, should lead to a better understanding of the disease process and the potential development of novel therapeutics and diagnostics in the future.

Related Articles

Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
CC BY-SA 3.0
Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
Reviews
5 February 2013 • 3 minutes read

Radio Review: Frontiers - Epigenetics

by Dr Sandy Raeburn

This Frontiers programme challenged three genetic dogmas. The presenter quoted a recent Observer headline on epigenetics: 'Why everything we were told about evolution was wrong!'...

Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
CC BY-SA 3.0
Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
Reviews
15 January 2013 • 3 minutes read

TV Review: Health Explained - Epigenetics

by Dr Rachael Panizzo

Epigenetics is a complex subject, so explaining it in just two minutes is a big ask. But that's what the short video clip, 'Health explained: epigenetics', on the BBC website attempts to do. Aimed at a general audience, the video succeeds in giving us a very basic introduction, but doesn't manage to capture what is new and exciting about this field of research...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Reviews
15 January 2013 • 3 minutes read

Book Review: Epigenetics - Linking Genotype and Phenotype in Development and Evolution

by Ruth Pidsley

Epigenetics has become something of a hot topic in recent years throughout the scientific community. 'Epigenetics: Linking Genotype and Phenotype in Development and Evolution', edited by Professors Benedikt Hallgrímsson and Brian Hall, reminds a new generation of molecular and systems biologists about the historical roots and scope of epigenetics...

Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
CC BY-SA 3.0
Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
Reviews
22 November 2012 • 3 minutes read

Radio Review: The First 1,000 Days - A Legacy for Life (In the Womb)

by Rosemary Paxman

In this first episode of a new documentary series, medical correspondent Dr Mark Porter investigated how developmental events in the womb have an astonishing impact on long-term adult health...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
14 November 2012 • 2 minutes read

New software successfully identifies rare disease gene

by Dr Christopher Chatterton

US scientists have been able to identify the gene responsible for an extremely rare X-linked genetic disorder in record time, using new computer software....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
23 October 2012 • 3 minutes read

Epigenomic research sheds light on complex disease

by Dr Lux Fatimathas

US researchers have revealed how changes in regions of DNA that do not code for genes can affect disease. The majority of the human genome is composed of non-protein coding regions of DNA. Changes in these regions are associated with disease susceptibility, but precisely how these changes function is unclear...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Comment
14 October 2012 • 4 minutes read

The new epigenetics

by Professor Marilyn Monk

All cells in the body have the same complement of 25000 genes, yet different cells in different specific tissues - such as nerve, muscle or gut - have different characteristics phenotype. It follows that different subpopulations of genes within cells of differing function must be active or silenced depending on requirements for function in a particular tissue. Obviously, there will be genes concerned with metabolism, growth, and cell division - the so-cal

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
5 November 2010 • 1 minute read

Epigenetic effects of stress being slowly uncovered

by Dr Christopher Chatterton

New research suggests that the impact of stress may be passed on from one generation to the next, and that psychiatric illness may have some degree of 'epigenetic heritability'....

Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
CC BY-SA 3.0
Image by Christoph Bock/Max Planck Institute for Informatics via Wikimedia Commons. Depicts a DNA molecule that is methylated on both strands on the centre cytosine.
News
17 September 2010 • 2 minutes read

£20 million study comparing the epigenetics of twins launched

by Dr Gabby Samuel

Scientists from the UK and China are collaborating to study epigenetic signatures that mark the differences between 5,000 twins. Those affected by diabetics and osteoporosis are just some of the people who could be set to benefit from the £20 million 'Epitwin' project....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
Comment
12 March 2010 • 3 minutes read

Epigenetics in psychiatric disorders: A guide for beginners

by Sally Marlow

Mental health is a huge global concern, with one in four people experiencing some form of mental health problem at some point in their lives. Psychiatric disorders are sometimes difficult to study, as they are diagnosed on the basis of observed behaviours...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Quangoing, going, gone: what should happen to the HFEA?

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

FILM: 200 Years of Mendel – From Peas to Personalised Medicine

1 August 2022 • 4 minutes read

Women's Health Strategy plans reflect rising needs of same-sex female couples

25 July 2022 • 4 minutes read

Was the Women's Health Strategy worth the wait?

25 July 2022 • 4 minutes read

Why the UK should extend the 14-day rule to 28 days

25 July 2022 • 5 minutes read

200 Years of Mendel: From Peas to Personalised Medicine

15 August 2022 • 5 minutes read

Same-sex parent should not have been forced to adopt child

15 August 2022 • 2 minutes read

FILM: Editing the Human Genome – Where Are We Now? What Happens Next?

8 August 2022 • 4 minutes read

Citizenship and same-sex parents – about time, Sweden!

8 August 2022 • 2 minutes read

FILM: 200 Years of Mendel – From Peas to Personalised Medicine

1 August 2022 • 4 minutes read

Women's Health Strategy plans reflect rising needs of same-sex female couples

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856