PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsSynthetic stem cells repair damaged hearts

BioNews

Synthetic stem cells repair damaged hearts

Published 9 January 2017 posted in News and appears in BioNews 883

Author

Paul Waldron

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).

Researchers in the US and China have developed a 'synthetic stem cell' that can repair tissue damaged by a heart attack...

Researchers in the US and China have developed a durable 'synthetic stem cell' that can repair tissue damaged by a heart attack.

Stem cell therapy carries risks, notably that the cells can divide out of control and form tumours, or that the body's immune system can reject the cells as foreign bodies. They are also complex and costly to produce and store. The scientists hope that their synthetic cells can bypass these risks, while offering comparable benefits to natural stem cells.

'We are hoping that this may be a first step toward a truly off-the-shelf stem cell product that would enable people to receive beneficial stem cell therapies when they're needed, without costly delays,' said Dr Ke Cheng of North Carolina State University, and a lead author of the study.

Stem cell therapies can regenerate organs and tissues by releasing of 'paracrine growth factors' – proteins and other substances which cause healing responses in the surrounding cells.

In the study, published in Nature Communications, the team made microparticles out of a biodegradable polymer and loaded them with growth factors secreted by cardiac stem cells. They then 'cloaked' these particles by coating them with membrane fragments taken from cardiac stem cells. The resulting synthetic stem cells are known as cell-mimicking microparticles (CMMPs).

The scientists added these CMMPs to lab-grown cultures of developing rat heart muscle cells. The CMMPs were able to bind to the developing cells, and increased both the production of heart cells and their ability to contract.

The researchers also injected the CMMPs into the hearts of mice that had undergone a simulated heart attack. Most of the CMMPs were retained in the heart, and after seven days the protective effects of the microparticles could be seen. The hearts pumped more blood, and the muscle cells had improved. Cell death and damage caused by the heart attack were also reduced.

These improvements were similar to those achieved by injecting cardiac stem cells, but did not provoke as much of an immune reaction. Furthermore, the CMMPs cannot replicate like natural stem cells or cause tumours.

'The synthetic cells operate much the same way a deactivated vaccine works,' said Dr Cheng. 'Their membranes allow them to bypass the immune response, bind to cardiac tissue, release the growth factors and generate repair, but they cannot amplify by themselves. So you get the benefits of stem cell therapy without risks.'

The particles are much more durable than stem cells, and can be frozen and thawed without damage. They also avoid the need to find an embryonic or patient source. The researchers hope that the same approach could be used to manufacture other types of stem cell.

Related Articles

Image by Bill Sanderson via the Wellcome Collection, © Wellcome Trust Ltd 1990. Depicts Laocoön and his family (from Greek and Roman mythology) entwined in coils of DNA.
Image by Bill Sanderson via the Wellcome Collection, © Wellcome Trust Ltd 1990. Depicts Laocoön and his family entwined in coils of DNA (based on the figure of Laocoön from Greek and Roman mythology).
News
9 May 2017 • 2 minutes read

Scientists call for new ethical guidelines for 'synthetic embryos'

by Dr Rachel Huddart

Rapid advances in stem cell and embryo research are in danger of outstripping current ethical guidelines and new regulations are urgently needed, warn scientists in a report published this week...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
25 April 2017 • 2 minutes read

Stem cell secretions may protect against glaucoma

by Emma Laycock

Stem cell secretions, called exosomes, appear to protect retinal cells in rats, offering a potential therapy for degenerative eye diseases like glaucoma...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
4 April 2017 • 2 minutes read

Stem cells could be used to create 'endless supply of blood'

by Jen Willows

A new method of producing red blood cells outside the body on a large scale has been developed by researchers at the University of Bristol...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
25 October 2016 • 2 minutes read

Functional mouse eggs made from artificial stem cells

by Dr Katie Howe

Scientists in Japan are the first to have created live mouse pups from eggs that were made from stem cells...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
25 October 2016 • 2 minutes read

Stem cells repair damaged heart muscle in monkeys

by Dr Jane Currie

Researchers in Japan have used stem cells from a matched donor to repair damaged heart muscle in macaque monkeys...

Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
CC0 1.0
Image by Alan Handyside via the Wellcome Collection. Depicts a human egg soon after fertilisation, with the two parental pronuclei clearly visible.
News
12 September 2016 • 2 minutes read

Research towards a developing a synthetic ovary

by Dr Katie Howe

Researchers in Belgium have taken the first steps towards producing a transplantable artificial ovary after demonstrating successful follicle survival in mice...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
23 May 2016 • 2 minutes read

Scientists hold 'secret' meeting on creating synthetic human genome

by Arit Udoh

A group of scientists has been criticised for holding a high-level, behind-closed-doors meeting to discuss a project to synthesise a complete human genome within ten years...

Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
CC BY 4.0
Image by K Hardy via the Wellcome Collection. Depicts a human embryo at the blastocyst stage (about six days after fertilisation) 'hatching' out of the zona pellucida.
News
30 March 2016 • 2 minutes read

3D bioprinter builds artificial bone, muscle and cartilage

by Kulraj Singh Bhangra

Researchers in the USA have designed a 3D printer that can build living cells around a biodegradable structure to construct various artificial tissues...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Gene complex implicated in severe premenstrual syndrome

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

15 August 2022 • 2 minutes read

Call to end ban on HIV-positive partner gamete 'donation'

15 August 2022 • 2 minutes read

Melanoma invades new tissues using nerve cell gene

15 August 2022 • 2 minutes read

Exceeding alcohol limits could damage DNA and accelerate ageing

15 August 2022 • 2 minutes read

Blood cell gene mutations affect mitochondria, increasing cardiovascular disease risk

15 August 2022 • 2 minutes read

Jumping gene helps immune system fight viruses

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856