PET PET
  • My Account
  • Subscribe
Become a Friend Donate
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • About Us
    • People
    • Press Office
    • Our History
  • Get Involved
    • Become a Friend of PET
    • Volunteer
    • Campaigns
    • Writing Scheme
    • Partnership and Sponsorship
    • Advertise with Us
  • Donate
    • Become a Friend of PET
  • BioNews
    • News
    • Comment
    • Reviews
    • Elsewhere
    • Topics
    • Glossary
    • Newsletters
  • Events
    • Upcoming Events
    • Previous Events
  • Engagement
    • Policy and Projects
      • Resources
    • Education
  • Jobs & Opportunities
  • Contact Us
  • My Account
  • Subscribe
  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements
PETBioNewsNewsCRISPR used in stem cell model to predict heart risk

BioNews

CRISPR used in stem cell model to predict heart risk

Published 22 June 2018 posted in News and appears in BioNews 955

Author

Dr Melanie Krause

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.

For the first time, scientists from Stanford University, California, have combined CRISPR genome editing with a stem cell system to model how a genetic mutation might affect heart disease risk...

For the first time, scientists from Stanford University, California, have combined genome editing with a stem cell system to model how a genetic mutation might affect heart disease risk.

Although many genetic variants might be 'related' to the risk of a condition, whether they actually lead to disease is uncertain. According to the study authors, their approach might help to minimise the use of other clinical tests such as MRIs and echocardiograms, or the use of unnecessary medications.

Professor Joseph Wu, senior author said: 'Results from this study will help improve the interpretation and diagnostic accuracy of gene variants, especially in the era of personalized medicine and precision health.'

The research published in Circulation, initially analysed genetic information from 54 'healthy' or symptom-free volunteers with no history of heart disease. They looked specifically for 135 markers of hypertrophic cardiomyopathy and congenital heart disease, which are associated with sudden cardiac death.

A variant of the gene MYL3, often associated with hypertrophic cardiomyopathy, was detected in one participant as well as several family members. The mutation in this patient was heterozygous, meaning of the two genetic copies, one was mutated while the other was not. In heterozygous cells the non-mutated form of a gene can often compensate for the mutated variant.

The scientists collected the patient's blood cells and reprogrammed them into iPS (induced pluripotent stem) cells. These cells were edited using CRISPR/Cas9 technology to turn the heterozygous mutation into a homozygous one. These were then coaxed into becoming heart cells and with further analysis, the team predicted this patient's mutation to be benign and not a cause for heart disease in the future.

Dr Kiran Musunuru at the University of Pennsylvania in Philadelphia, who was not involved in this work, complimented the study but also highlighted its cost and time constraints. He told CNN: 'While it's very elegant, the major limitation of this work is that it took years of expensive work by a team of very talented scientists to do this for just one patient.'

Indeed Professor Wu estimated a six-month period and costs of US$10,000 to conduct this analysis on one genetic variation.

However, Professor Joseph Hill, of UT Southwestern Medical Centre in Dallas, Texas and editor of Circulation, stated the importance of this research. 'This study combined two new powerful technologies, induced pluripotent stem cells and CRISPR/Cas9 gene editing, to model a patient's heart in a dish and to test whether those heart cells manifested signs of disease,' he said.

'This approach heralds a new era of in vitro disease modelling and drug testing as pivotal elements of precision medicine.'

Related Articles

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
17 April 2020 • 2 minutes read

Cancer gene helps regrow heart cells

by Dr Molly Godfrey

A gene normally associated with cancer could help to repair damaged heart tissue...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
29 November 2019 • 2 minutes read

Stem cells may trigger immune repair to mend hearts

by Dr Rosie Morley

Stem cell therapies may become redundant in repairing cardiac function after a heart attack, suggests a new study in mice...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
7 June 2019 • 2 minutes read

Stem cell genes altered inside living organism for first time

by Dr Rosie Morley

Genes have been edited directly in stem cells of a living organism, a new study has found. Scientists were able to modify genes in specific stem cells in adult mice using a virus...

Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false colour).
CC BY 4.0
Image by Sílvia Ferreira, Cristina Lopo and Eileen Gentleman via the Wellcome Collection. Depicts a single human stem cell embedded within a porous hydrogel matrix (false-coloured cryogenic scanning electron micrograph).
News
2 November 2018 • 2 minutes read

Heart stem cell trial 'paused' in wake of study retraction

by Shaoni Bhattacharya

A US government agency has 'paused' a trial of stem cell treatment for heart failure following calls for 31 scientific papers to be retracted...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
11 October 2018 • 2 minutes read

£40 gene test could predict heart disease risk

by Dr Melanie Krause

A one-off genetic test could identify people with a genetic predisposition to coronary heart disease, according to a new study...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
15 June 2018 • 2 minutes read

Genome-editing cells with CRISPR may affect cancer risk

by Dr Melanie Krause

The success of genome editing is related to the activity of an important tumour suppressor gene, two separate studies have found...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
25 May 2018 • 2 minutes read

CRISPR used to block HIV virus replicating in cells

by Shaoni Bhattacharya

Scientists in Japan have harnessed genome editing to successfully block the HIV virus from replicating inside infected cells....

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
11 May 2018 • 2 minutes read

CRISPR study finds resistance mutations to key cancer drugs

by Hannah Tippett Simpson

DNA mutations that give tumours resistance to a new class of breakthrough breast and ovarian cancer drugs have been discovered...

Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the output from a DNA sequencing machine.
CC BY 4.0
Image by Peter Artymiuk via the Wellcome Collection. Depicts the shadow of a DNA double helix, on a background that shows the fluorescent banding of the sequencing output from an automated DNA sequencing machine.
News
20 April 2018 • 2 minutes read

DNA editing outside the cell with CRISPR could improve cancer diagnosis

by Isobel Steer

'Cell-free' CRISPR has been developed by scientists at the Christine Care Health System's Gene Editing Institute in Delaware, allowing them to extract cellular DNA and make multiple, significant edits to the genetic code...

Leave a Reply Cancel reply

You must be logged in to post a comment.

« Discovery of testes microbiome gives clues on infertility

Data-Label The UK's Leading Supplier Of Medical Labels & Asset Labels

RetiringDentist.co.uk The UK's Leading M&A Company.

Find out how you can advertise here
easyfundraising
amazon

This month in BioNews

  • Popular
  • Recent
8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

1 August 2022 • 2 minutes read

First UK medical guidelines issued for trans fertility preservation

1 August 2022 • 2 minutes read

Male age has more impact on IVF birth rate than previously thought

8 August 2022 • 2 minutes read

Placenta and organ formation observed in mouse embryo models

8 August 2022 • 2 minutes read

Complex structures of the human heart bioengineered

8 August 2022 • 1 minute read

Brain tumour gene also linked to childhood cancers

8 August 2022 • 2 minutes read

Lower hormone doses may improve IVF egg quality

8 August 2022 • 2 minutes read

Boosting muscle cell production of gene therapy proteins

Subscribe to BioNews and other PET updates for free.

Subscribe
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856

Subscribe to BioNews and other PET updates for free.

Subscribe
PET PET

PET is an independent charity that improves choices for people affected by infertility and genetic conditions.

  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • YouTube
  • RSS
Wellcome
Website redevelopment supported by Wellcome.

Navigation

  • About Us
  • Get Involved
  • Donate
  • BioNews
  • Events
  • Engagement
  • Jobs & Opportunities
  • Contact Us

BioNews

  • News
  • Comment
  • Reviews
  • Elsewhere
  • Topics
  • Glossary
  • Newsletters

Other

  • My Account
  • Subscribe

Website by Impact Media Impact Media

  • Privacy Statement
  • Advertising Policy
  • Thanks and Acknowledgements

© 1992 - 2022 Progress Educational Trust. All rights reserved.

Limited company registered in England and Wales no 07405980 • Registered charity no 1139856